Thiele Geotech Inc

Project

Date

Page

1/12

GRAVITY WALL DESIGN METHODOLOGY STONE STRONG PRECAST MODULAR BLOCK

Evaluate according to industry practice following AASHTO and NCMA analytical techniques – refer to:

AASHTO Standard Specifications for Highway Bridges 2002, 17th Addition

NCMA Design Manual for Segmental Retaining Wall, Second Edition

Additional analytical methods and theories are taken from other AASHTO versions and other FHWA guidelines – refer to:

<u>Mechanically Stabilized Earth Walls and Reinforced Slopes design and Construction</u> <u>Guidelines, NHI-00-043</u>

Properties of Soil/Aggregate

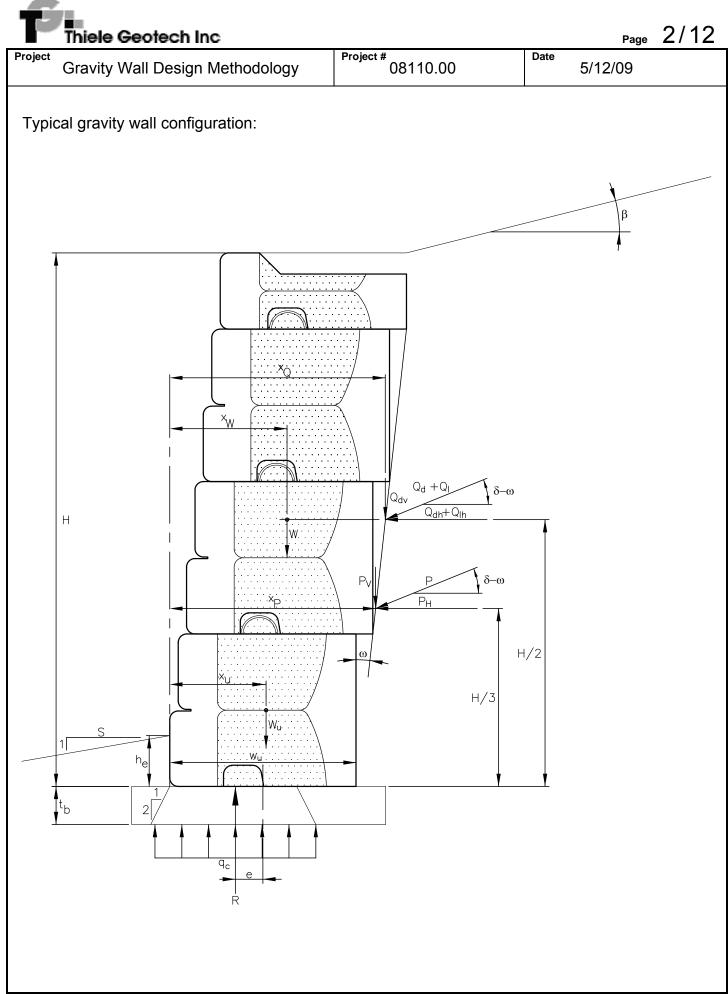
soil and material properties should be determined for the specific materials to be used.

unit fill - γ_a = 110 pcf max, (see AASHTO 2002 5.9.2) & ϕ_u

leveling base – aggregate base typical γ_b & ϕ_b (or concrete base may be substituted)

retained soil - γ & ϕ by site conditions

foundation soil - $\gamma \ensuremath{\, \varphi}$ & c by site conditions


interface angle - $\delta = \frac{1}{2} \phi$ (see AASHTO 2002 5.9.2)

Geometric Properties

Effective weight of unit

block weight	24 SF unit – 750 lb/ft of wall
	6 SF unit – 450 lb/ft of wall
weight of aggregate	24 SF unit – 596 lb/ft of wall
	6 SF unit – 296 lb/ft of wall

Only 80% of the weight of aggregate and soil is included in the overturning calculations, W' (see AASHTO 2002 5.9.2).

ct	Gravity Wall Design Methodology	Project # 08110.00	Date 5/12/09
	Unit Width/Center of Mass		
	The nominal unit width is 44 inches f of mass of the concrete block and th may be reduced by up to 2 inches to	e unit fill is at 22.7 inche	s from the face. These valu
	w _u = 3.50 ft		
	x _u = 1.73 ft		
	Wall batter		
	The wall system is based around the block atop a 24 SF block will batter b next block atop a 6 SF block will batt	back 4 inches. The 6 SF	•
	4 in. setback per 24 SF block	(36 in. tall)	
	2 in. setback per 6 SF block (18 in. tall)	
	$\omega = \tan^{-1}(4/36) = 6.34^{\circ}$		
	$\omega' = \tan^{-1}(4/36) = 6.34^{\circ}$ (batte	r along back face match	es the batter along the front
	Base Thickness/Embedment		
	The type and thickness of wall base site requirements. A granular base we thickness can be adjusted to reduce footing can also be used. The require exposed height of the wall and by the required embedment can be calculate equation:	with a thickness of 9 inch the contact pressure. A red embedment to the to e slope at the toe, as we	nes is commonly used, but the concrete leveling pad or p of the base is related to the ll as other factors. The
	h _e = H'/(20*S/6)		
	where S is the run of the toe s	slope per unit fall and H'	is the exposed height
	A minimum embedment of 6 to 9 inc embedment of 20 inches or more ma		

T	Thiele Geotech Inc			Page	4/12
Project	Gravity Wall Design Methodology	Project # 08110.00	Date	5/12/09	

Tail Extension Adjustments

The gravity wall capability can be increased by using a precast Mass Extender block (limited to approximately 12 additional inches, for a total block width of 56 inches) or a castin-place tail extension (width is not limited – recommend height be at least 2 times the width to provide shear through the tail openings).

If tail extensions are used, the following adjustments are made:

Wall batter

Wall batter is recalculated along the back of the wall from the rear of the tail extension to the rear of the top of the wall. Use ω ' in Coulomb equation and earth pressure component calculations. To calculate ω ' it is necessary to know the effective setback width, w_s, which is the horizontal distance between the back edge of the top block and the back edge of the mass extender at the bottom. w_s is the batter of the front face minus the length of tail extension, w_{te}. w_s is negative when the mass extender projects further than the back of the top block. Knowing this distance and the height of wall:

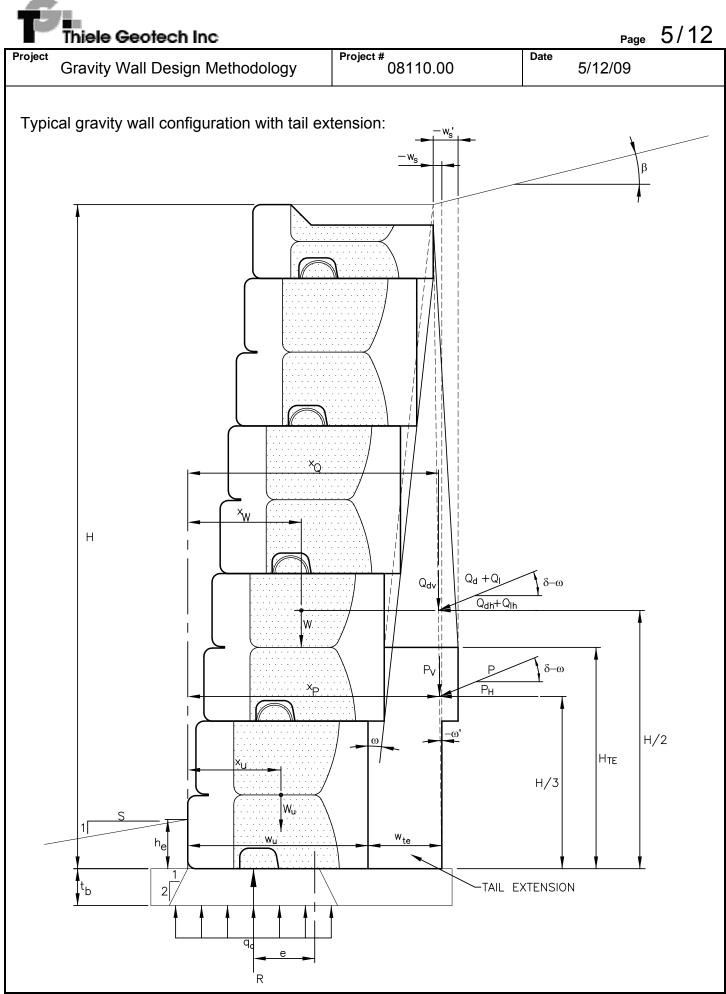
 $\omega' = \arctan(w_s / H_w)$

Interface Angle

 $\delta = \frac{3}{4} \phi$ (see AASHTO 2002 5.9.2)

Weight of Wall

The weight of the wall includes the contributions of the mass extender and the soil wedge atop the mass extender. A typical concrete unit weight is 145 pcf. Use the soil unit weight for the soil wedge.


 $W_{te} = (w_{te} * H_{te}) * 145 \text{ pcf}$

where w_{te} is the width of the tail extension and H_{te} is the height of the extension (both in ft)

The weight of the soil triangle is calculated using the following equation:

$$W_s = (H - H_{te}) * \gamma * w_{te}/2$$

Note: The soil wedge is defined by the limit of the tail extension and not by the simplified batter of the back of the wall. The simplified batter is used in the earth pressure analysis. Since the minimum width of the tail extension is typically maintained, it may project beyond the extension at the first course.

oject	_	Project #	Date
•	Gravity Wall Design Methodology	08110.00	5/12/09
Calcu	ulate Forces		
	Coulomb active earth pressure coeff	ficient (see AASHTO 20	002 5.5.2-1)
	$K_{a} = \frac{\cos^{2}(\phi)}{\cos^{2}(\omega')\cos(\omega'-\delta)\left[1+\sqrt{\frac{1}{2}}\right]}$	$\frac{+\omega')}{\frac{\sin(\phi+\delta)\sin(\phi-\beta)}{\cos(\omega'-\delta)\cos(\omega'+\beta)}}\right]^{2}$	
	Earth load components (see AASH	TO 2002 5.5.2-1)	
	Vertical Forces:		
	P _v = 0.5 K _a γH ² sin(δ - ω')		
	$Q_{dv} = K_a Q^* H^* sin(\delta - \omega')$ where	e Q is the effective surcl	harge in psf
	Horizontal Forces:		
	P _h = 0.5 K _a γH ² cos(δ - ω')		
	$Q_{dh} = K_a Q^* H^* cos(\delta - \omega)$ when	re Q is the effective surc	charge in psf
	$Q_{lh} = K_a Q^* H^* \cos(\delta - \omega)$ where	e Q is the effective surc	harge in psf
	Note: Surcharge loads may a vertical component of the live neglected as conservative.		-
	Resisting forces		
	Vertical Forces:		
	W_{b} – Weight of wall units		
	W_{te} – Weight of concrete tail ϕ	extension, if used	
	W _a – Weight of infill aggregat	e (use 80% aggregate v	weight for overturning)
	W_s – Weight of soil atop tail e	xtension (use 80% weig	ght for overturning)
	The center of gravity of the components components of the wall and taking a the hinge point of the block (see AAS be calculated using the following equ	weighted average of th SHTO 2002 5.9.2). Alte	eir weight and distance from

Thiele Geotech	Project #		Page 7/12
Gravity Wall Desig	n Methodology 08	110.00	5/12/09
The center of ma	ss of the stack of blocks is cald	ulated	as:
$\mathbf{x}_{\mathrm{b}} = \mathbf{x}_{\mathrm{u}} + (\mathbf{H})$	H - h _u)/2 * tan(ω)		
The center of ma	ss of the soil triangle over the t	ail is;	
$x_s = w_u + ($	H _{te} - h _u) * tan(ω) + 2 * w _{te} /3 - w	s'/3	
The center of ma	ss of the tail extension can be	calcula	ted with the following equation:
$x_{te} = w_u + v_u$	w _{te} /2		
This leads to an o	overall adjusted center of mass	of:	
x _w = [[x _u +	$(H - h_u)/2 * tan(\omega)] * (W_b + W_a)$	+ x _{te} *	$W_{te} + x_s * W_s]/(W_b + W_a + W_{te} + W_s)$
based on t	height of unit, h _u , is taken as 3 he 6 SF unit to produce the mo th either unit as the bottom co	ore con	ed on the 24 SF unit instead of 1.5 servative result (units can be
The resultants of	the earth load components are	calcul	ated as follows:
x _{Pv} =(H/3)*1	tan(ω') + w _u + w _{te}		
(1.1.4)			
x _{Qdv} =(H/2))*tan(ω ') + w _u + w _{te}		
x _{Qdv} =(H/2) x _{Ph} =H/3)*tan(ω') + w _u + w _{te}		
)*tan(ω') + w _u + w _{te}		
x _{Ph} =H/3)*tan(ω') + w _u + w _{te}		
$x_{Ph}=H/3$ $x_{Qdh}=H/2$ $x_{Qlh}=H/2$			
$x_{Ph}=H/3$ $x_{Qdh}=H/2$ $x_{Qlh}=H/2$		x	Moment about toe
$x_{Ph}=H/3$ $x_{Qdh}=H/2$ $x_{Qlh}=H/2$	ents	x (ft)	Moment about toe (lb*ft)
$x_{Ph}=H/3$ $x_{Qdh}=H/2$ $x_{Qlh}=H/2$	ents Force		
x _{Ph} =H/3 x _{Qdh} =H/2 x _{Qlh} =H/2 Table of Forces & Mome	ents Force		
x _{Ph} =H/3 x _{Qdh} =H/2 x _{Qlh} =H/2 Table of Forces & Mome	Force (Ib)	(ft)	(Ib*ft) ($W_b + W_a + W_{te} + W_s$) * x_w
x _{Ph} =H/3 x _{Qdh} =H/2 x _{Qlh} =H/2 Table of Forces & Mome Vertical Forces weight of wall	Force (Ib) W _b + W _a + W _{te} + W _s	(ft)	(Ib*ft) (W _b + W _a + W _{te} + W _s) * x_w
x _{Ph} =H/3 x _{Qdh} =H/2 x _{Qlh} =H/2 Table of Forces & Mome Vertical Forces weight of wall modified weight	ents Force (Ib) $W_b + W_a + W_{te} + W_s$ $W_b + 0.8^*W_a + W_{te} + 0.8^*W_s$	(ft) X _w X _w	(Ib*ft) $(W_b + W_a + W_{te} + W_s) * x_w$ $(W_b + 0.8*W_a + W_{te} + 0.8*W_s) * x_w$
x _{Ph} =H/3 x _{Qdh} =H/2 x _{Qlh} =H/2 Table of Forces & Mome Vertical Forces weight of wall modified weight earth pressure	ents Force (Ib) $W_b + W_a + W_{te} + W_s$ $W_b + 0.8^*W_a + W_{te} + 0.8^*W_s$ P_v	(ft) X _w X _w X _{Pv}	(Ib*ft) $(W_b + W_a + W_{te} + W_s) * x_w$ $(W_b + 0.8*W_a + W_{te} + 0.8*W_s) * x_w$ $P_v * x_{Pv}$
x _{Ph} =H/3 x _{Qdh} =H/2 x _{Qlh} =H/2 Table of Forces & Mome <u>Vertical Forces</u> weight of wall modified weight earth pressure DL surcharge	ents Force (Ib) $W_b + W_a + W_{te} + W_s$ $W_b + 0.8^*W_a + W_{te} + 0.8^*W_s$ P_v	(ft) X _w X _w X _{Pv}	(Ib*ft) $(W_b + W_a + W_{te} + W_s) * x_w$ $(W_b + 0.8*W_a + W_{te} + 0.8*W_s) * x_v$ $P_v * x_{Pv}$
x _{Ph} =H/3 x _{Qdh} =H/2 x _{Qlh} =H/2 Table of Forces & Mome weight of wall modified weight earth pressure DL surcharge Horizontal Forces	ents Force (Ib) $W_b + W_a + W_{te} + W_s$ $W_b + 0.8^*W_a + W_{te} + 0.8^*W_s$ P_v Q_{dv}	(ft) X _w X _w X _{Pv} X _{Qdv}	$(lb*ft)$ $(W_{b} + W_{a} + W_{te} + W_{s}) * x_{w}$ $(W_{b} + 0.8*W_{a} + W_{te} + 0.8*W_{s}) * x_{v}$ $P_{v}*x_{Pv}$ $Q_{dv}*x_{Qdv}$

f	Thiele Geotech Inc		Page	8/12
Project	Gravity Wall Design Methodology	Project # 08110.00	Date 5/12/09	

Overturning

For overturning, the modified weights using 80% of the aggregate weight (including the soil over the tail extension) are used for all overturning calculations.

M'v	Σ moments from vertical forces (using 80% W_s & $W_a)$
M _H	Σ moments from horizontal forces
FS	M' _V / M _H

The overturning safety factor should be greater than 1.5 for private projects (NCMA 4.3 and ICBO 2006 1806.1). A minimum safety factor of 2.0 may be required for highway applications (AASHTO 2002 5.5.5).

Check that FS > 1.5

Sliding

Friction on the base of the wall is used to resist sliding failure. Frictional resistance must be determined both between the wall assembly and the base and between the base and the foundation soil (or through the foundation soil).

The sliding resistance is calculated as the smaller result of the following equations:

For base to foundation soil failure, use:

 $R_{s(foundation \ soil)} = (W + P_v + Q_{dv}) \tan \phi + B_w^*c$

 $B_w = w_t + w_{te} + t_b$

where ϕ represents foundation soils, B_w is base width (block width plus $\frac{1}{2}$ H:1V distribution through base), and c represents foundation soil cohesion

For block to base material sliding, use:

 $R_{s(footing)} = \mu_b (W + P_v + Q_{dv})$

where μ_b represents a composite coefficient of friction for the base

The composite friction coefficient is calculated using contributory areas. The base of the standard Stone Strong 24 SF unit is 80 percent open and 20 percent concrete. On a unit width basis, the contributory area is 0.73 sf of concrete and 2.94 sf of aggregate.

If a tail extension is used, the area of the tail extension must also be calculated and the total area is also increased accordingly. Thus, the equation for composite friction coefficient across the base becomes:

 $\mu_{b} = (2.94^{*}\mu_{p - unit fill/base} + 0.73^{*}\mu_{p - block/base} + w_{te}^{*}\mu_{p - extension/base})/(3.67 + w_{te})$

where μ_p is the partial friction coefficient for the indicated materials (dimensions in ft)

	Thiele	Geote	ch Inc
Project			

Gravity Wall Design Methodology

Date

	Coefficient of Friction
Block to Aggregate Base formed precast surface on compacted aggregate surface (includes Mass Extender)	0.8*tan _{¢b}
Unit Fill to Aggregate Base screened aggregate (loose to moderate relative density - dumped) on compacted aggregate surface	lower tan ϕ_b or tan ϕ_u
Block to Concrete Base formed precast surface on floated concrete surface (includes Mass Extender)	0.60
Unit Fill Aggregate to Concrete Base screened aggregate (loose to moderate relative density - dumped) on floated concrete surface	0.8*tan _{\$u}
Concrete Tail Extension to Aggregate Base cast in place concrete on aggregate surface	tan ϕ_b
Concrete Tail Extension to Concrete Base cast in place concrete on floated concrete surface	0.75
Concrete Tail Extension Directly on Foundation Soil (Sand) cast in place concrete on granular soil	tan ϕ_f
Note: These typical values may be used for evaluation of base sliding at the discretion of the engineer of record is responsible for all design input and for evaluating the reasonableness based upon his/her knowledge of local materials and practices and on the specific design deta	of calculation output

Since the unit fill aggregate is typically placed to a moderately loose state, the friction angle for the screened unit fill aggregate typically controls for the interface between the unit fill and the base aggregate.

If actual test data for the project specific materials is not available, or for preliminary design, the following conservative friction angles are suggested for base material:

	Friction	n Angle (d	egrees)
	Well Graded, Densely Compacted	Screened Aggregate, Compacted	Screened Aggregate, Loose to Moderate Relative Density
Crushed Hard Aggregate >75% w/ 2 fractured faces, hard natural rock	42	40	36
Crushed Aggregate >75% w/ 2 fractured faces, medium natural rock or recycled concrete	40	38	35
Cracked Gravel >90% w/ 1 fractured face	36	35	32
Note: Physical testing of specific aggregates is recommended. Whe values may be used at the discretion of the user. The licensec design input and for evaluating the reasonableness of calculation of local materials and practices and on the specific design details	l engineer of r	ecord is respo	onsible for all

ct C		a da la avr	Project #	Date	E140100	
G	ravity Wall Design Meth	nodology	08110.00		5/12/09	
٦	The minimum value for	sliding resi	stance is calculated as fol	lows:		
	F _H		Σ horizontal forces	3		7
	Fv	Σν	vertical forces (using 100%	% W _s & W _a)	
	R's (footing)		$\mu_{b} F_{V}$			
	R's (foundation soil)		[F _V *tan(ϕ) + B _w *c]			
	min R's	SI	maller of $R'_{s (footing)}$ or $R'_{s (footing)}$	oundation soil)		
	FS		min R' _s / F_H			
arinę E a	check that FS >1 g/Eccentricity B _f ' is the equivalent bea and including a ½H:1V	.5 ring area.	l be greater than 1.5 This is the base block wic through granular base or			
arinę E a	check that FS >1 g/Eccentricity B _f ' is the equivalent bea and including a $\frac{1}{2}$ H:1V concrete base. B _f ' = w _u + w _{te} + t _b	.5 ring area. distribution	This is the base block wide through granular base or or $B_f' = w_u + w_{te} + W_{te}$	1H:1ᢆV dis ⊦ 2*t _b - 2*e	tribution th (for concre	rough
aring E a	check that FS >1 g/Eccentricity B _f ' is the equivalent bea and including a $\frac{1}{2}H:1V$ concrete base. B _f ' = w _u + w _{te} + t _b F _V	.5 ring area. distribution	This is the base block wide through granular base or or $B_f' = w_u + w_{te} + \Sigma$ Σ vertical forces (using γ	1H:1ᢆV dis ⊦ 2*t _b - 2*e	tribution th (for concre	rough
aring E a	check that FS >1 g/Eccentricity B _f ' is the equivalent bea and including a $\frac{1}{2}$ H:1V concrete base. B _f ' = w _u + w _{te} + t _b F _V weight of base	.5 ring area. distribution , - 2*e	This is the base block wide through granular base or or $B_{f}' = w_u + w_{te} + \frac{1}{2}$ Σ vertical forces (using $\gamma_{t_b} * \gamma_{b}$	1H:1ᢆV dis ⊦ 2*t _b - 2*e 100% W _s 8	tribution th (for concre & W _a)	rough ete ba
aring E a	check that FS >1 g/Eccentricity B _f ' is the equivalent bea and including a $\frac{1}{2}$ H:1V concrete base. B _f ' = w _u + w _{te} + t _b F _V weight of base M _v	.5 ring area. distribution , - 2*e	This is the base block wide through granular base or or $B_f' = w_u + w_{te} + \frac{1}{\Sigma}$ <u>vertical forces (using 7 $t_b * \gamma_b$</u> ments from vertical forces	1H:1ᢆV dis ⊦ 2*t _b - 2*e 100% W _s 8 (using 100	tribution th (for concre & W _a) 0% W _s & W	rough ete ba
aring E a	check that FS >1 g/Eccentricity B _f ' is the equivalent beat and including a $\frac{1}{2}$ H:1V is concrete base. B _f ' = w _u + w _{te} + t _b F _V weight of base M _V M _H	.5 ring area. distribution , - 2*e	This is the base block wide through granular base or or $B_f' = w_u + w_{te} + \Delta t_b + \Delta t_b$ Σ vertical forces (using $\Delta t_b + \gamma_b$ ments from vertical forces Σ moments from horiz	1H:1ᢆV dis ⊦ 2*t _b - 2*e 100% W _s 8 (using 100 zontal force	tribution th (for concre & W _a) 0% W _s & W	rough ete ba
aring E a c	check that FS >1 g/Eccentricity B _f ' is the equivalent bea and including a $\frac{1}{2}$ H:1V of concrete base. B _f ' = w _u + w _{te} + t _b F _V weight of base M _V M _H e	.5 ring area. distribution , - 2*e	This is the base block wide through granular base or or $B_f' = w_u + w_{te} + v_{te} + v_{t$	1H:1ᢆV dis + 2*t _b - 2*e 100% W _s 8 (using 100 zontal force - M _H)/F _V	tribution th (for concre & W _a) 0% W _s & W	rough ete ba
aring E a c v	check that FS >1 g/Eccentricity B _f ' is the equivalent beat and including a $\frac{1}{2}$ H:1V is concrete base. B _f ' = w _u + w _{te} + t _b F _V weight of base M _V M _H	.5 ring area. distribution , - 2*e	This is the base block wide through granular base or or $B_f' = w_u + w_{te} + \Delta t_b + \Delta t_b$ Σ vertical forces (using $\Delta t_b + \gamma_b$ ments from vertical forces Σ moments from horiz	1H:1V dis ← 2*t _b - 2*e 100% W _s 8 (using 100 zontal force - M _H)/F _V - 2*e	tribution th (for concre & W _a) 0% W _s & W	rough ete ba
aring E a c c v V B f' B f'	check that FS >1 g/Eccentricity B _f ' is the equivalent bea and including a $\frac{1}{2}$ H:1V of concrete base. B _f ' = w _u + w _{te} + t _b F _V weight of base M _V M _H e (granular base)	.5 ring area. distribution , - 2*e	This is the base block wide through granular base or or $B_{f}' = w_u + w_{te} + w_$	1H:1V dis + 2*t _b - 2*e 100% W _s 8 (using 100 zontal force - M _H)/F _V - 2*e - 2*e - 2*e	tribution th (for concre & W _a) 0% W _s & W	rough ete ba
aring E a c c v B f' B f' Cor	check that FS >1 g/Eccentricity B_{f} is the equivalent beat and including a $\frac{1}{2}H:1V$ is concrete base. B_{f} = $w_{u} + w_{te} + t_{t}$ F_{V} weight of base M_{v} M_{H} e (granular base) (concrete base)	.5 ring area. distribution , - 2*e	This is the base block wide through granular base or or $B_{f}' = w_u + w_{te} + w_$	1H:1V dis + 2*t _b - 2*e 100% W _s 8 (using 100 zontal force - M _H)/F _V - 2*e - 2*e - 2*e	tribution th (for concre & W _a) 0% W _s & W es	rough ete ba

The safety factor for bearing should be greater than 2

Check that FS > 2.0

Ð	Thiele Geotech Inc			Page	11/12
Project	Gravity Wall Design Methodology	Project # 08110.00	Date	5/12/09	

Seismic Design

Seismic components of force are calculated according to the procedures in FHWA 4.2h.

The maximum acceleration $A_m = (1.45 - A)^*A$ where A is the peak horizontal ground acceleration.

The seismic earth pressure coefficient is calculated with the following equation:

$$K_{ae} = \frac{\cos^2(\phi + \omega - \xi)}{\cos(\xi)\cos^2(-\omega)\cos(\delta - \omega + \xi) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \xi - \beta)}{\cos(\delta - \omega + \xi)\cos(\omega + \beta)}}\right]^2}$$

where ξ = arctan [K_h/(1 - K_v)]. K_v is generally taken as 0. K_h is the maximum horizontal acceleration of the wall, and is a function of the maximum allowable displacement of the wall during a seismic event. It is calculated with the following equation:

 $K_h = 1.66 * A_m * [A_m/(d*25.4)]^{0.25}$

with d = 2 inches, the conservatively assumed maximum horizontal displacement

The horizontal inertia force P_{ir} is calculated as follows:

 $P_{ir} = 0.5 * K_{h} * \gamma * H_{2} * H + 0.125 * K_{h} * \gamma * H_{2}^{2} * tan(\beta)$

where H_2 is the height of backfill at the back of the block.

The seismic thrust is calculated as follows:

 $P_{ae} = 0.5 * γ * H_2^2 * (K_{ae} - K_a)$ P_{aeh} = 0.5 * γ * H_2^2 * (K_{ae} - K_a) * cos(δ - ω)

In overturning analysis, the inertial force is applied at half the height of the wall, while the seismic thrust is applied at 60% of the wall height. By AASHTO requirements, the full inertial force is applied along with 50% of the seismic thrust (FHWA 4.2h).

oject	Gravity Wall Design Methodology	Project # 08110.00	Date 5/12/09
	The total overturning moment is incr M _H + P _{ir} *H/2 + (P _{aeh} /2)*(0.6*H		ollowing equation:
	The total horizontal sliding force is ir F _H + P _{ir} + (P _{aeh} /2)	ncreased as shown in th	e following equation:
	Seismic load conditions should be v Live loads are typically excluded fro	0,	rning/eccentricity, and beari
nte	rnal Analysis		
	Internal stability analysis is conducte are addressed in the external stabili possible.	•	•
	Overturning is evaluated identically	to external stability analy	/sis.
	Sliding resistance is calculated base reports for complete test data)	ed on the interface shear	test (see interaction test
	$R'_{s} = [362 + (W + P_v + Q_{dv})^* ta)$	an (35.2°)]	
	For each load case, the sliding safe FS = R' _s / F _H check that FS > 1.5	ty factor must be greater	⁻ than 1.5:
	At a minimum, internal stability shou immediately above the mass extend of any dual-face units.		•

Example Gravity Calculation	Project # 08110.00	Date 6/28/09
Note: Examples to demonstrate metho safety factors	d of analysis only - not inte	nded to conform w/ AASH
Example section – 9 ft tall unreinforc		, sand backfill
Uniform soil (sand) - γ = 125 pcf ϕ = 3	•	
Wall is composed of three 24 SF blocks ω ' = arctan((3*4")/(9ft*12"/ft)) = 6.34°		
Granular base aggregate $-\phi = 40^{\circ}$	$0 - \frac{1}{2} = 10$	
Unit fill aggregate – ϕ = 35°		
Weight of Wall		
W _b = (3*6,000 lb)/8 ft = 2,250 lb/ft block	(
W _a = (3*43.32 ft ³ *110 pcf)/8 ft = 1,787 ll	b/ft aggregate fill	
Total Wall Weight = 2,250 + 1,787 = 4,0	037 lb/ft	
W' = 1,787 lb/ft*0.80 + 2,250 lb/ft = 3,68	30 lb/ft	
Forces/Geometric Properties		
Forces/Geometric Properties Center of Gravity		

 $x_w = [(1.73+0.5^*(9 \text{ ft-3 ft})^*\tan(6.34^\circ))^*(2,250 \text{ lb} + 1,787 \text{ lb})]/4,037 \text{ lb} = 2.06 \text{ ft}$ $w_u = (44 \text{ in-2 in})/12 = 3.5 \text{ ft}$

Soil force components

$$\mathsf{K}_{\mathsf{a}} = \frac{\cos^2(30^\circ + 6.34^\circ)}{\cos^2(6.34^\circ)\cos(6.34^\circ - 15^\circ) \left[1 + \sqrt{\frac{\sin(30^\circ + 15^\circ)\sin(30^\circ - 14.0^\circ)}{\cos(6.34^\circ - 15^\circ)\cos(6.34^\circ + 14.0^\circ)}}\right]^2} = 0.313$$

$$\begin{split} \mathsf{P}_{\mathsf{h}} &= 0.5^{*}(0.313)^{*}125\mathsf{pcf}^{*}(9~\mathsf{ft})^{2*}\mathsf{cos}(15^{\circ}-6.34^{\circ}) = 1,564~\mathsf{lb/ft} \\ \mathsf{P}_{\mathsf{v}} &= 0.5^{*}(0.313)^{*}125\mathsf{pcf}^{*}(9~\mathsf{ft})^{2*}\mathsf{sin}(15^{\circ}-6.34^{\circ}) = 238~\mathsf{lb/ft} \end{split}$$

Example Gravity Calculation	Project # 08110.00	Date 6/28/09
Overturning		
FS = [3,680 lb/ft*2.06 ft + 238 lb*(3.5 ft+	-9 ft/3*tan(6.34°))] / [1,564	lb*9 ft/3]
= 1.81 > 1.5 OK!		
Sliding		
u _b = [(0.8*3.67 ft*tan(35°)) + (0.2*3.67 ft	*0.8*tan(40°))]/(3.67 ft) =	0.69
Jse the smaller of the following:		
R _s = 0.69*(4,037 lb/ft + 238 lb/ft)	= 2,950 lb/ft	
R _s = (4,037 lb/ft + 238 lb/ft)*tan(3	80°) + 0 = 2,468 lb/ft	
=S = 2,468 lb/ft / 1,564 lb/ft = 1.58 > 1.5	5 OK!	
Bearing		
$N_q = e^{\pi^* \tan(30^\circ)} * (\tan(45^\circ + 30^\circ/2))^2 = 18.4$	0	
N _c = (18.40-1)/tan(30°) = 30.14		
Nγ = 2*(18.40+1)*tan(30°) = 22.40		
e = [1,564 lb/ft*9 ft/3-4,037 lb/ft*(2.06 ft	– 3.5 ft/2)-238 lb/ft*(3.5 ft/2	2+9 ft/2*tan(6.34°))]
/ [4,037 lb/ft + 238 lb/ft] = 0.69 ft		
3 _f '= 3.5 ft+0.75 ft-2*0.69 ft = 2.88 ft		
q _c = (4,037 lb + 238 lb/ft)/2.88 ft + 0.75		
q _b = 0*30.14+(9"+9")/12*125pcf*18.40+	0.5*125pcf*2.88 ft*22.40 =	7,479 psf
FS = 7,479 psf/1,580 psf = 4.73 > 2.0	OK!	

Thiele Geotech Inc				Page	3/4
Project Example Gravity Calculation	Project # 08110.00	Date	6/28/09		
Internal Analysis, Upper 2 Courses					
<u>Weight of Wall</u> W _b = $(2^{*}6,000 \text{ lb})/8 \text{ ft} = 1,500 \text{ lb/ft block}$ W _a = $(2^{*}43.32 \text{ ft}^{3*}110 \text{ pcf})/8 \text{ ft} = 1,191 \text{ lb/ft}$	aggragata fill				
W _a = (2 43.32 ft 110 pc)/8 ft = 1,191 lb/ft Total Wall Weight = 1,500 lb/ft + 1,191 lb/ft W' = 1,191 lb/ft*0.80+1,500 lb/ft = 2,453 lb/	= 2,691 lb/ft				

Forces/Geometric Properties

Center of Gravity

 $x_{block} - 22.7$ " from face, with 2 additional inches removed due to rounding - 1.73' total $x_w = [(1.73+0.5*(6 \text{ ft}-3 \text{ ft})*tan(6.34^\circ))*(1,500 \text{ lb/ft} + 1,191 \text{ lb/ft})]/2,153 \text{ lb/ft} = 1.90 \text{ ft}$ $w_u = (44 \text{ in}-2 \text{ in})/12 = 3.5 \text{ ft}$

$$\begin{split} & \underline{\text{Soil force components}} \\ & \mathsf{K}_a = 0.313 \\ & \mathsf{P}_h = 0.5^*(0.313)^*125\text{pcf}^*(6~\text{ft})^{2*}\text{cos}(15^\circ - 6.34^\circ) = 695~\text{lb/ft} \\ & \mathsf{P}_v = 0.5^*(0.313)^*125\text{pcf}^*(6~\text{ft})^{2*}\text{sin}(15^\circ - 6.34^\circ) = 106~\text{lb/ft} \end{split}$$

Overturning

FS = [2,453*1.90 ft +106 lb*(3.5 ft+6 ft/3*tan(6.34°))] / [695 lb*6 ft/3] = 3.63 > 1.5 **OK!**

Interface Shear

R_s = 362 lb/ft +(1,500 lb/ft + 1,191 lb/ft + 106 lb/ft)*tan(35.2°)= 2,335 lb/ft

FS = 2,335 lb/ft /695 lb/ft = 3.36 > 1.5 **OK!**

Internal Analysis, Top Course		
Weight of Wall		
W _b = (6,000 lb)/8 ft = 750 lb/ft block		
$W_a = (43.32 \text{ ft}^{3*}110 \text{ pcf})/8 \text{ ft} = 596 \text{ lb/ft}$	aggregate fill	
Total Wall Weight = 750 lb/ft + 596 lb/f	ft = 1,346 lb/ft	
W' = 596 lb/ft*0.80+750 lb/ft = 1,227 lb	o/ft	
Forces/Geometric Properties		
Center of Gravity		
x_{block} – 22.7" from face, with 2 addition	al inches removed due to ro	unding – 1.73 ft total
w _u = (44 in-2 in)/12 = 3.5 ft		
Soil force components		
$K_a = 0.313$ $P_a = 0.5*(0.212)*125 moft (2.ft)^2 mono(15)$	° C 0 4°) - 174 lb/#	
$P_h = 0.5^*(0.313)^*125pcf^*(3 ft)^{2*}cos(15^\circ)^{-1}$ $P_v = 0.5^*(0.13)^*125pcf^*(3 ft)^{2*}sin(15^\circ)^{-1}$		
Overturning		
FS = [1,227 lb/ft*1.73 ft +26 lb*(3.5 ft+	3 ft/3*tan(6.34°))] / [174 lb*3	ft/3]
= 12.75 > 1.5 OK !		
Interface Shear		
R _s = 362 lb/ft +(750 lb/ft + 596 lb/ft + 2		£1

Example Gravity Calculation	Project # 08110.00	Date 6/28/09
Note: Examples to demonstrate method safety factors	d of analysis only - not inte	nded to conform w/ AASHT
Example section – 10.5 ft tall wall, 150) psf surcharge, 18"x3' ta	ail extension, clay backfill
Jniform soil (sand) - γ = 120 pcf ϕ = 26	6° c = 150 psf	
Nall is composed of three 24 SF blocks	and one 6 SF block	
ω'= arctangent(-8 in/10.5 ft) = -3.63°	$\delta = 3/4^{*}26^{\circ} = 19.5^{\circ}$	
Granular base aggregate – ϕ = 40°		
Jnit fill aggregate – ϕ = 35°		
Neight of Wall		
$N_{\rm b}$ = (3*6,000 lb)/8 ft + 1,600 lb/4 ft = 2,	650 lb/ft block	
N _a = (3*43.32 ft ³ *110 pcf)/8 ft + (10.75 f	t ³ *110 pcf)/4 ft = 2,083 lb/f	t aggregate fill
N _{te} = 18 in/12*3 ft*145 pcf = 653 lb/ft		
$N_{\rm sot}$ = (10.5 ft-3 ft)*18 in/12/2*120 pcf =	675 lb/ft	
Total Wall Weight = 2,650 + 2,083 + 653	3 + 675= 6,061 lb/ft	
<i>W</i> ['] = (2,033 lb/ft + 675 lb/ft)* 0.80+2,700) lb/ft+653 lb/ft = 5,509 lb/ft	:
Forces/Geometric Properties		
Center of Gravity		
$\kappa_{block} - 22.7$ " from face, with 2 additional	inches removed due to ro	unding – 1.73' total
<i>w</i> _u = (44 in-2 in)/12 = 3.5 ft		
v _s = 2*4 in+2 in-18 in = -8 in		
κ _w = [(1.73+0.5*(10.5 ft-3 ft)*tan(6.34°))*	(2,650 lb + 2,083 lb)+(3.5	ft +18 in/12)/2*653 lb/ft
+(3.5 ft+2/3*18 in/12+1/3*(-8 in)/1	2)*675 lb/ft]/6,061 lb = 2.6	1 ft
Soil force components		
COS	² (26° + -3.63°)	= 0.372
$K_{a} = \frac{\cos^{2}(-3.63^{\circ})\cos(-3.63^{\circ} - 19.5^{\circ})}{\cos(-3.63^{\circ} - 19.5^{\circ})}$	$1+\sqrt{\frac{\sin(26^\circ+19.5^\circ)}{\cos(-3.63^\circ-19.5^\circ)}}$	$\frac{1}{2} = 0.372$ sin(26°-0°) cos(-3.63°+0°)

$$\begin{split} \mathsf{P}_{\mathsf{h}} &= 0.5^*(0.372)^*120 \; \mathsf{pcf}^*(10.5 \; \mathsf{ft})^{2*}\mathsf{cos}(19.5^\circ - (-3.63^\circ)) = 2,265 \; \mathsf{lb/ft} \\ \mathsf{P}_{\mathsf{v}} &= 0.5^*(0.372)^*120 \; \mathsf{pcf}^*(10.5 \; \mathsf{ft})^{2*}\mathsf{sin}(19.5^\circ - (-3.63^\circ)) = 967 \; \mathsf{lb/ft} \\ \mathsf{Q}_{\mathsf{h}} &= 0.372^*150 \; \mathsf{psf}^*10.5 \; \mathsf{ft}^*\mathsf{cos}(19.5^\circ - (-3.63^\circ)) = 539 \; \mathsf{lb/ft} \end{split}$$

Example Gravity Calculation	Project # 08110.00	Date 6/28/09
Overturning		
FS = [5,509*2.61 ft + 967 lb*(3.5 ft+18	in/12+10.5 ft/3*tan(-3.63°))]	
/ [2,265 lb*10.5 ft/3+539 lb*10.5	ft/2] = 1.77 > 1.5 OK!	
Sliding		
$\mu_{b} = [(0.8*3.67 \text{ ft*tan}(35^{\circ}))+(0.2*3.67 \text{ ft})]$	*0.8*tan(40°))+0.84*18 in/12	2]/(3.67 ft+18 in/12) = 0.74
Use the smaller of the following:		
R _s = 0.74*(6,061 lb/ft + 967 lb/ft) = 5,201 lb/ft	
R _s = (6,061 lb/ft + 967 lb/ft)*tan((26°) + 150 psf*(3.5 ft+18 in/	12+9 in/12) = 4,290 lb/ft
FS = 4,290 lb/ft / (2,265 lb/ft + 539 lb/ft	:) = 1.53 > 1.5 OK!	
Bearing		
$N_q = e^{\pi^* \tan(26^\circ)} * (\tan(45^\circ + 26^\circ/2))^2 = 11.8$	85	
N _c = (11.85-1)/tan(26°) = 22.25		
Nγ = 2*(11.85+1)*tan(26°) = 12.54		
e = [2,265 lb/ft*10.5 ft/3+539 lb/ft*10.5	· · · ·	,
-967 lb/ft*(3.5 ft/2+10.5 ft/2*tan(lb/ft] = 1.12 ft
B _f '= 3.5 ft+18 in/12+0.75 ft-2*1.12 ft =		
$q_c = (6,061 \text{ lb} + 967 \text{ lb/ft})/3.52 \text{ ft} + 0.75$		
q _b = 150 psf*22.25+(9"+9")/12*120pcf*	11.85+0.5*120pcf*3.52 ft*12	2.54 = 8,119 pst
FS = 8,119 psf/2,099 psf = 3.86 > 2.0	OK!	
• • •		

Example Gravity Calculation	Project # 08110.00	Date 6/28/09
Internal Analysis, Upper 7.5 feet	I	
Weight of Wall		
W _b = (2*6,000 lb)/8 ft + 1,600 lb/4 ft=	1,900 lb/ft block	
W _a = (2*43.32 ft ³ *110 pcf)/8 ft+(10.75	ft ³ *110 pcf)/4 ft = 1,487 lb/ft	aggregate fill
Total Wall Weight = 1,900 lb/ft + 1,48	7 lb/ft = 3,387 lb/ft	
Forces/Geometric Properties		
Center of Gravity		
$x_{block} - 22.7$ " from face, with 2 addition	nal inches removed due to ro	unding – 1.73' total
x _w = [(1.73+0.5*(7.5 ft-3 ft)*tan(6.34°)])*(1,900 lb/ft + 1,487 lb/ft)]/3	,387 lb/ft = 1.98 ft
w _u = (44 in-2 in)/12 = 3.5 ft		
ω = arctangent(2 in/18 in) = 6.34°	δ = 1/2*26° = 13°	
Soil force components		
$K_{a} = \frac{\cos^{2}(2)}{\cos^{2}(2)}$	26°+6.34°)	= 0.311
$K_{a} = \frac{\cos^{2}(2)}{\cos^{2}(6.34^{\circ})\cos(6.34^{\circ} - 13^{\circ})\left[1 + \frac{1}{2}\right]}$	$\sqrt{\frac{\sin(26^{\circ}+13^{\circ})\sin(26^{\circ}-6)}{\cos(6.34^{\circ}-13^{\circ})\cos(6.34^{\circ})}}$	$\left[\frac{\mathbf{D}^{\circ}}{\mathbf{P}+\mathbf{O}^{\circ}}\right]^{2}$
$P_{h} = 0.5^{*}(0.311)^{*}120pcf^{*}(7.5 ft)^{2*}cos(100)^{*}$	13° - 6.34°) = 1,043 lb/ft	
$P_v = 0.5^*(0.311)^*120pcf^*(7.5 ft)^{2*}sin(1)^*$	3° - 6.34°) = 122 lb/ft	
$Q_h = 0.311*150 \text{ psf}^*7.5 \text{ ft}^*\cos(13^\circ - 6.13^\circ)$	34°) = 348 lb/ft	
$Q_h = 0.311 150 \text{ psi } 7.5 \text{ ft } \cos(13 - 6.5)$		
Overturning		
Overturning	3 ft +122 lb*(3.5 ft+7.5 ft/3*tai	n(6.34°))]
Overturning	·	n(6.34°))]
Overturning FS = [(1,900 lb/ft+0.8*1,487 lb/ft)*1.98	·	n(6.34°))]
Overturning FS = [(1,900 lb/ft+0.8*1,487 lb/ft)*1.98 / [1,043 lb*7.5 ft/3+348 lb/ft*7.5	5 ft/2] = 1.68 > 1.5 OK!	

Example Gravity Calculation	Project # 08110.00	Date 6/28/09
Internal Analysis, Upper 4.5 feet	L	
Weight of Wall		
W _b = (6,000 lb)/8 ft + 1,600 lb/4 ft= 1,15	i0 lb/ft block	
$W_a = (43.32 \text{ ft}^{3*}110 \text{ pcf})/8 \text{ ft}+(10.75 \text{ ft}^{3*})$	110 pcf)/4 ft = 891 lb/ft agg	regate fill
Total Wall Weight = 1,150 lb/ft + 891 lb/	/ft = 2,041 lb/ft	
Forces/Geometric Properties		
Center of Gravity		
$x_{block} - 22.7$ " from face, with 2 additiona	I inches removed due to ro	ounding – 1.73 ft total
$x_w = [(1.73+0.5^*(4.5 \text{ ft-} 3 \text{ ft})^* \tan(6.34^\circ))^*(6.34^\circ))$	(1,150 lb/ft + 891 lb/ft)]/2,0	41 lb/ft = 1.81 ft
w _u = (44 in-2 in)/12 = 3.5 ft		
Soil force components		
K _a = 0.311		
$P_h = 0.5^*(0.311)^*120 \text{ pcf}^*(4.5 \text{ ft})^{2*}\cos(1300)^{12}$		
$P_v = 0.5^*(0.311)^*120 \text{ pcf}^*(4.5 \text{ ft})^{2*}\sin(130)$		
Q _h = 0.311*150 psf*4.5 ft*cos(13° - 6.34	+) = 209 lb/lt	
Overturning		
FS = [(1,150 lb/ft+0.8*891 lb/ft)*1.81 ft -	+44 lb*(3.5 ft+4.5 ft/3*tan(6	.34°))]
/ [376 lb*4.5 ft/3+209 lb/ft*4.5 ft/2	2] = 3.42 > 1.5 OK!	
Interface Shear		
R _s = 362 lb/ft +(2,041 lb/ft + 44 lb/ft)*tar	n(35.2°)= 1,833 lb/ft	

FS = 1,833 lb/ft /(376 lb/ft+209 lb/ft) = 3.14 > 1.5 **OK!**

Example Gravity Calculation	Project # 08110.00	Date 6/28/09
nternal Analysis, Upper 1.5 feet		
<u>Neight of Wall</u>		
$N_{\rm b}$ = 1,600 lb/4 ft= 400 lb/ft block		
N _a = (10.75 ft ³ *110 pcf)/4 ft = 296 lb/ft	aggregate fill	
Fotal Wall Weight = 400 lb/ft + 296 lb/	ft = 696 lb/ft	
Forces/Geometric Properties		
Center of Gravity		
$\kappa_{block} - 22.7$ " from face, with 2 addition	al inches removed due to r	ounding – 1.73 ft total
w _u = (44 in-2 in)/12 = 3.5 ft		
Soil force components		
$x_{a} = 0.311$		
P _h = 0.5*(0.311)*120 pcf*(1.5 ft) ² *cos(P _v = 0.5*(0.311)*120 pcf*(1.5 ft) ² *sin(1	•	
$Q_{\rm h} = 0.311*150 \text{ psf}*1.5 \text{ ft*cos}(13^{\circ} - 6.3)$		
$a_{\rm h} = 0.311 + 30 \text{psi} + 1.3 \text{ft} \text{cos}(13 - 0.3)$	54) – 70 lb/lt	
Overturning		
⁻ S = [(400 lb/ft+0.8*296 lb/ft)*1.73 ft +	5 lb*(3.5 ft+1.5 ft/3*tan(6.3	4°))]
/ [42 lb*1.5 ft/3+70 lb/ft*1.5 ft/2]	= 15.23 > 1.5 OK!	
nterface Shear		
R _s = 362 lb/ft +(696lb/ft + 5 lb/ft)*tan(3	5.2°)= 856 lb/ft	
-S = 856 lb/ft /(42 lb/ft+70 lb/ft) = 7.64	> 1.5 OK!	